
Concept, hardware development, and clinical trials of a Galinstan based Mercury free sphygmomanometer: Merkfree
Pinto, F. J. et al. World Heart Day 2021: COVID-19, digital health, and tackling cardiovascular disease. Lancet 398(10310), 1467–1468 (2021).
Muntner, P. et al. Measurement of blood pressure in humans: A scientific statement from the American Heart Association. Hypertension 73(5), e35–e66 (2019).
Sharman, J. E. & Marwick, T. H. Accuracy of blood pressure monitoring devices: A critical need for improvement that could resolve discrepancy in hypertension guidelines. J. Hum. Hypertens. 33(2), 89–93 (2019).
Campbell, N. R. & McKay, D. W. Accurate blood pressure measurement: why does it matter?. CMAJ 161(3), 277–278 (1999).
Buchanan, S., Orris, P. & Karliner, J. Alternatives to the mercury sphygmomanometer. J. Public Health Policy. 32(1), 107–120 (2011).
Murray, A. In praise of mercury sphygmomanometers. Appropriate sphygmomanometer should be selected. BMJ 322(7296), 1248–1249 (2001).
Waugh, J. J., Gupta, M., Rushbrook, J., Halligan, A. & Shennan, A. H. Hidden errors of aneroid sphygmomanometers. Blood Press. Monit. 7(6), 309–312 (2002).
McKay, D. W., Campbell, N. R., Parab, L. S., Chockalingam, A. & Fodor, J. G. Clinical assessment of blood pressure. J. Hum. Hypertens. 4(6), 639–645 (1990).
van Montfrans, G. A. Oscillometric blood pressure measurement: progress and problems. Blood Press. Monit. 6(6), 287–290 (2001).
Organization, W. H. WHO Technical Specifications for Automated Non-invasive Blood Pressure Measuring Devices with Cuff (World Health Organization, 2020).
Bailey, R. H., Knaus, V. L. & Bauer, J. H. Aneroid sphygmomanometers. An assessment of accuracy at a university hospital and clinics. Arch. Intern. Med. 151(7), 1409–1412 (1991).
Jones, D. W., Frohlich, E. D., Grim, C. M., Grim, C. E. & Taubert, K. A. Mercury sphygmomanometers should not be abandoned: An advisory statement from the Council for High Blood Pressure Research. Am. Heart Assoc. Hypertens. 37(2), 185–186 (2001).
Kumar, R., Sahani, A. K. & Wander, G. S. A survey to gauge confidence of Indian clinicians on three primary devices for blood pressure measurement. Blood Press. Monit. 26(3), 196–199 (2021).
Kaul, U. et al. Self-blood pressure measurement as compared to office blood pressure measurement in a large Indian population; the India Heart Study. J. Hypertens. 38(7), 1262–1270 (2020).
“About us | Minamata Convention on Mercury.” https://www.mercuryconvention.org/en/about. Accessed 29 Sep 2021.
Tang, S. Y., Tabor, C., Kalantar-Zadeh, K. & Dickey, M. D. Gallium liquid metal: The devil’s elixir. Annu. Rev. Mater. Res. 51, 381–408. https://doi.org/10.1146/annurev-matsci-080819-125403 (2021).
Liu, T., Sen, P. & Kim, C. J. Characterization of nontoxic liquid-metal alloy galinstan for applications in microdevices. J. Microelectromech. Syst. 21(2), 443–450. https://doi.org/10.1109/JMEMS.2011.2174421 (2012).
Zhu, J. Y., Tang, S. Y., Khoshmanesh, K. & Ghorbani, K. An integrated liquid cooling system based on galinstan liquid metal droplets. ACS Appl. Mater. Interfaces. 8(3), 2173–2180. https://doi.org/10.1021/acsami.5b10769 (2016).
Zhang, C. et al. Nucleation and growth of polyaniline nanofibers onto liquid metal nanoparticles. Chem. Mater. 32(11), 4808–4819. https://doi.org/10.1021/acs.chemmater.0c01615 (2020).
Ladd, C., So, J. H., Muth, J. & Dickey, M. D. 3D printing of free-standing liquid metal microstructures. Adv. Mater. 25(36), 5081–5085 (2013).
Egry, I., Ricci, E., Novakovic, R. & Ozawa, S. Surface tension of liquid metals and alloys—Recent developments. Adv. Colloid Interface Sci. 159(2), 198–212 (2010).
Doudrick, K. et al. Different shades of oxide: From nanoscale wetting mechanisms to contact printing of gallium-based liquid metals. Langmuir 30(23), 6867–6877 (2014).
Kumar, R., Ghai, V. & Sahani, A. K. A surface modification approach to overcome wetting behavior of gallium-based liquid metal droplets. IEEE Trans. Nanotechnol. 21, 158–162 (2022).
Khan, M. R., Eaker, C. B., Bowden, E. F. & Dickey, M. D. Giant and switchable surface activity of liquid metal via surface oxidation. Proc. Natl. Acad. Sci. U. S. A. 111(39), 14047–14051 (2014).
Britannica, The Editors of Encyclopaedia. “Pascal’s principle”. Encyclopedia Britannica (2018). https://www.britannica.com/science/Pascals-principle. Accessed 26 Jan 2022.
Beevers, G., Lip, G. Y. & O’Brien, E. ABC of hypertension. Blood pressure measurement. Part I-sphygmomanometry: Factors common to all techniques. BMJ 322(7292), 981–985 (2001).
Ulusoy, Ş, Özkan, G., Güvercin, B., Sökmen, Y. & Erdem, Y. Do physicians measure patients’ blood pressure, and are those measurements reliable?. J. Hum. Hypertens. 32(3), 203–211 (2018).
Thavarajah, S., White, W. B. & Mansoor, G. A. Terminal digit bias in a specialty hypertension faculty practice. J. Hum. Hypertens. 17(12), 819–822 (2003).
Executive Board. Public health impacts of exposure to mercury and mercury compounds: the role of WHO and ministries of public health in the implementation of the Minamata Convention (2014).